Multidimensional Characterization of Evolutionary Clusters

ثبت نشده
چکیده

Software architects regularly have to identify unwanted couplings between different parts of a software system. Identifying groups of software entities which frequently changed together in the past, i.e. evolutionary clusters, are one way to help find such unwanted couplings. However, there may be many such evolutionary clusters. Not all of them point to unwanted couplings. In this chapter we discuss how a multi-dimensional characterization of evolutionary clusters can help identify unwanted couplings. In addressing this question we describe (1) properties used for characterizing evolutionary clusters, (2) scenarios characterizing unwanted couplings, and (3) the mapping of such scenarios to queries on a set of evolutionary clusters, resulting in a subset denoting unwanted couplings according to that scenario. We apply the proposed characterization to the case of a large embedded software system having a development history of more than a decade. By doing so, we execute Step 4 of the process described in Section 1.7 to help the software architect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ensemble clustering with maximize diversity using evolutionary optimization algorithms

Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...

متن کامل

A Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks

Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...

متن کامل

High Dimensional Data Clustering through Efficient Evolutionary Algorithm

Dimensionality reduction is essential in multidimensional data mining since the dimensionality of real time data could easily extend to higher dimensions. Most recent efforts on dimensionality reduction, however, are not adequate for multidimensional data due to lack of scalability. In this paper, we use the evolutionary algorithm for the dimension reduction process. Initially, our proposed evo...

متن کامل

خوشه‌بندی خودکار داده‌ها با بهره‌گیری از الگوریتم رقابت استعماری بهبودیافته

Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...

متن کامل

An Approach to Reducing Overfitting in FCM with Evolutionary Optimization

Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012